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Marc Rébillata,b,�, Romain Hennequin c, Étienne Corteel d, Brian F.G. Katz a

a LIMSI (CNRS), 91403 Orsay, France
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In a number of vibration applications, systems under study are slightly nonlinear. It is

thus of great importance to have a way to model and to measure these nonlinearities in

the frequency range of use. Cascade of Hammerstein models conveniently allows one to

describe a large class of nonlinearities. A simple method based on a phase property of

from only one measured response of the system. Mathematical foundations and

practical implementation of the method are discussed. The method is afterwards

validated on simulated and real systems. Vibrating devices such as acoustical

transducers are well approximated by cascade of Hammerstein models. The harmonic

distortion generated by those transducers can be predicted by the model over the entire

audio frequency range for any desired input amplitude. Agreement with more time

consuming classical distortion measurement methods was found to be good.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Vibratory phenomena are usually assumed to be linear. However, many vibrating systems are subject to nonlinear
behaviours, such as loudspeakers [1], musical instruments [2] and vibrating plates [3]. Even wave propagation in air is not
completely linear [4]. The study of these nonlinearities is thus of great importance in order to model these devices and
phenomena or to justify their ‘‘linearity’’.

Identification of nonlinear systems requires measurements or estimation of model’s structural elements from a finite
set of input/output data [5]. Classical linear measurement methods [6,7] capture only the linear behaviour of the system
under study. Traditional nonlinear measurement methods [8] give total harmonic distortion (THD), harmonic distortion of
order n (HDn) or inter-modulation products (IMP). These quantities are measured using pure tones at a given amplitude
and frequency. They do not describe nonlinearities themselves but only some of their effects for arbitrary excitations.
Moreover, experimental processes involved in those methods are very time-consuming if a wide range of frequencies and
amplitudes is to be considered. There is thus a real need for rapid model based procedures to measure nonlinearities.

Nonlinear systems can be classically represented by Volterra series [9] or by ‘‘Sandwich’’ structures [5]. The cascade of
Hammerstein models [10] is a subclass of those models and can be used to exactly represent systems having diagonal
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Volterra Kernels. This model is composed of N branches in parallel. Each branch comprised a static polynomial nonlinearity
followed by a linear filter.

A simple method which makes it possible to quickly access the structural elements of a cascade of Hammerstein models
is presented in this paper. This method is based on the method initially proposed by Farina [11]. Exponential sine sweeps
are used as input signals, and allow for the temporal separation of the different orders of nonlinearity [11–14]. Structural
elements of the assumed model are then extracted from only one response of the system. The method is validated on a
simulated system and the influence of the different parameters is shown.

As transducers are most often the least linear part in the audio chain, knowing their nonlinear behaviour is very
important. Two major types of transducers exists: electrodynamic loudspeakers [15] and panel-based transducers
(distributed mode loudspeakers [16] or multi-actuator panels [17]). In electrodynamic loudspeakers, a motor converts the
electrical signal into motion and makes a cone vibrate. The piston-like movement of the cone generates the sound field. In
panel-based loudspeakers, a motor is also used but transmits its motion to a light and stiff panel. The flexural waves
travelling in the panel then generate the sound field.

In both loudspeaker types, the motor induces nonlinearities because of non-uniform magnetic field, Eddy currents and
variations of the electrical inductance with displacements [15,18]. In electrodynamic loudspeakers, significant excursion
can induce nonlinear bending in the cone and a nonlinear behaviour of the suspensions [1]. In panel-based loudspeakers,
large amplitude displacements occur in the plate near the exciter position. In this case the propagation of flexural waves
[3] and the strain/stress relation of the material which compose the plate [19] can be nonlinear.

In the literature, electrodynamic loudspeakers have been greatly studied from a nonlinear point of view. To represent
their nonlinear behaviour, different physical models have been built. Their formulation was either completely analytical
[20,21] or based on the finite element method [22]. In Ref. [23], Klippel proposed to reduce the Volterra series expansion to
a ‘‘Sandwich’’ model and identified its parameters from measurements using the method presented in [24]. In [11,25], it is
suggested to use simpler models, i.e. cascade of Hammerstein models, to model and identify different audio systems,
including acoustical transducers.

In the present paper, two different acoustical transducers (an electrodynamic one and a panel-based one) are studied
experimentally under the assumption that they can be modelled using cascade of Hammerstein models. Their models are
completely identified using the previously introduced method. THD and HDn at different frequencies and amplitudes of the
input signal are evaluated for these transducers by classical means and compared to predictions made using the identified
Kernels. The agreement between the results given by the two methods is very good for a wide range of amplitudes.

After reviewing how to model and to measure nonlinearities (Section 2), the mathematical foundations of the current
method are presented (Section 3). Implementation of the method is then described (Section 4) and validated on a
simulated system (Section 5). Acoustical transducers are identified using the previous method (Section 6) and the resulting
Kernels are used successfully to predict the harmonic distortion generated by the two transducers (Section 7).

2. Modelling and measurements of nonlinearities

An overview of existing models and measurement methods of nonlinearities is given in this section. Only single-input/
single-output (SISO) time-invariant causal nonlinear systems without continuous component will be considered here.

2.1. Volterra series

Volterra series [9] enables one to express the relationship between the nonlinear system input e(t) and output s(t) as a
series of multiple convolution integrals:

sðtÞ ¼
Xþ1
k ¼ 1

Z þ1
0

. . .

Z þ1
0

vkðt1, . . . ,tkÞeðt�t1Þ . . . eðt�tkÞdt1 . . . dtk (1)

The functions fvkðt1, . . . ,tkÞgk2N� are called Volterra Kernels and completely characterize the system. Volterra models can
then be seen as a generalization of the simple convolution operator used for linear systems. Such models represent exactly
any nonlinear ‘‘analytical’’ system [26], and approximate any nonlinear system with a ‘‘fading memory’’ [27]. Measurement
methods exist to identify the first two or three terms of Volterra series [28–31]. These experimental methods are time
consuming because they require many measurements. Moreover the difficult physical interpretation of the different terms
of the Volterra series limits its use [32].

2.2. Sandwich approach

Another approach to nonlinear system identification is to assume that systems have a given block-structure. Following
the ‘‘Sandwich’’ approach [5], a nonlinear system is represented as M parallel branches composed of three elements in
series: a static nonlinear part Pmð�Þ sandwiched between two linear parts lm

l (t) and lm
r (t). Such systems are a subclass of

Volterra systems. It can be shown that any continuous nonlinear system can be approximated by such a model [33].
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To identify such structures, the form of the static nonlinear part can be assumed and the two unknown linear parts can
be estimated from measurements at different frequencies and amplitudes [24]. This leads to only a discrete knowledge of
Lm

l (f) and Lm
r (f) in the frequency domain and remains a long experimental task. In Ref. [34], Abel et al. proposed another

method to identify such structures. Unfortunately, this general method cannot be used successfully in practice due to
numerical instabilities.

2.3. Cascade of Hammerstein models

In a cascade of Hammerstein models [10], each branch is composed of one nonlinear static polynomial element
followed by a linear one hn(t), as shown in Fig. 1.

Mathematically, the relation between the input e(t) and the output s(t) of such a system is given by Eq. (2), where �
denotes the convolution.

sðtÞ ¼
XN

n ¼ 1

hn � enðtÞ (2)

In this model, each impulse response hn(t) is convolved with the input signal elevated to its nth power and the output
s(t) is the sum of these convolutions. The first impulse response h1(t) represents the linear response of the system. The
other impulse responses fhnðtÞgn2f2...Ng model the nonlinearities.

The family fhnðtÞgn2f1...Ng will be referred to as the Kernels of the model. These Kernels are assumed to be integrable. Any
cascade of Hammerstein models is fully represented by its Kernels.

It can easily be shown from Eqs. (1) and (2) that cascade of Hammerstein models correspond to Volterra models having
diagonal Kernels in the temporal domain, as in Eq. (3), where dðtÞ represents the Dirac distribution. This nonlinear model is
thus referred in the literature as a diagonal Volterra model [35], but also as a cascade of Hammerstein models [5] or Uryson
model [10]:

8ðt1, . . . ,tkÞ vkðt1, . . . ,tkÞ ¼ hkðt1Þdðt1Þ . . .dðtkÞ (3)

As can be seen in Eq. (2), cascade of Hammerstein models are linear in the parameters to be estimated, i.e. the output of
the system is a linear combination of the Kernels fhnðtÞgn2f1...Ng. A naive approach is to identify the model using a classical
least square method, as proposed for general Volterra systems in [36]. Thus the mean squared error between the actual
output of the system y(t) and the output of the estimated model s(t) given in Eq. (2) can be minimized with respect to the
coefficients of h1ðtÞ,h2ðtÞ, . . . ,hNðtÞ and the solution is given by

argmin
h1ðtÞ,h2ðtÞ,...,hN ðtÞ

X
t

JyðtÞ�sðtÞJ2 (4)

However, the least square method requires the inversion of a MN �MN matrix, where N is the order of the system
under test and M is the length of the impulse responses hn(t) in samples. This matrix can be very ill-conditioned since it is
generated from the exponent (until N) of the input signal. This results in important errors in parameters estimation
especially in noisy conditions. Moreover the computation of the matrix from the input signal and of the inverse of the
matrix is computationally costly and limits in practical case the memory M of the system. Some numerical methods are,
however, available to limit these points (see for example [37,38]), and to overcome these drawbacks alternative methods
have also been developed.

Gallman [10] and Hawksford [25] proposed a method to estimate the elements of a cascade of Hammerstein models
using Gaussian noise at different amplitudes as inputs. The employed estimation procedures are strongly based on the
knowledge of the order of nonlinearity of the polynomial expansion, which is unknown in practical cases. Moreover, these
methods to identify the Kernels from the measurements are also computationally costly.
Fig. 1. Block diagram representation of a cascade of Hammerstein models.
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Farina proposed another method using sine sweeps with frequency varying exponentially with time [11]. An upper
bound of the order of nonlinearity of the model has to be assumed. This method allows only for the separation of
the different orders of nonlinearity and not for the complete identification of the Kernels of the system. Recently, Novák
et al. [39] have identified Kernels from the contributions of the different orders of nonlinearity using a least mean
square minimization procedure. No results are provided to judge the influence of the different parameters on its
performances.

The method proposed here gives direct mathematical access to all the Kernels fhnðtÞgn2f1...Ng from the contributions of
the different orders of nonlinearity obtained as in Ref. [11]. The main advantage of the proposed approach over the least
squared based technique, besides conditioning and computational problems, is that it provides a direct evaluation of the N

impulse responses hn(t) of the system. The foundations and the key implementation of this simple method are explained in
detail. The whole procedure is validated on a simulated system and on two real systems.

3. Mathematical foundations of the method

Mathematical foundations of the method used for direct identification of the elements of a cascade of Hammerstein
models are given in this section. This is based on the procedure initially proposed by Farina [11].

3.1. A cascade of Hammerstein models fed with sine sweeps

To experimentally cover the frequency range on which the system under study is to be identified, cosines with time-
varying frequencies are interesting signals. Eq. (5) defines such a signal:

8t 2 R eðtÞ ¼ cos½FðtÞ� (5)

If e(t) is the input of the cascade of Hammerstein models, the output of the nonlinear block of the ith branch will have the
form of Eq. (6), as can be seen in Fig. 1:

eiðtÞ ¼ cosi½FðtÞ� (6)

Using Chebyshev polynomials, ei(t) is rewritten in Eq. (7) as a linear function of fcos½kFðtÞ�gk2½1,i�. Details of the computation
of the matrix C are provided in the appendix:

8i 2 f1 . . .Ng cosi½FðtÞ� ¼
Xi

k ¼ 0

Cði,kÞcos½kFðtÞ� (7)

3.2. Exponential sine sweeps

When the instantaneous frequency of e(t) is increasing exponentially from f1 to f2 ðf1,f240Þ in a time T, such a signal is
referred to as an ‘‘exponential sine sweep’’ [11,13] and its instantaneous phase is given by

8t 2 R FðtÞ ¼ 2p f1T

lnðf2=f1Þ
ðeðt=TÞlnðf2=f1Þ�1Þ�p=2 (8)

The corresponding instantaneous frequency of e(t) is

8t 2 R f ðtÞ ¼
FuðtÞ

2p ¼ f1eðt=TÞlnðf2=f1Þ (9)

Thus f(0) = f1 and f(T) = f2. The frequency range [f1,f2] corresponds to the band of interest of the system under test.

3.3. Fundamental phase property

From Eq. (8), it can be shown that this type of signal exhibits the following phase property:

8k 2 N�, 8t 2 R, kFðtÞ ¼F tþ
Tlnk

lnðf2=f1Þ

� �
�ðk�1Þ

p
2
þ2p f1T

lnðf2=f1Þ

� �
(10)

By choosing Tm ¼ ð2mp�p=2Þlnðf2=f1Þ=2pf1 with m 2 N�, the second term in Eq. (7) becomes a multiple of 2p and one
obtains Eq. (11) which is another way to express the kth term of the linearisation presented in Eq. (7):

8k 2 N�, cosðkFðtÞÞ ¼ cosðFðtþDtkÞÞ with Dtk ¼
Tmlnk

lnðf2=f1Þ
(11)

For any Tm-long logarithmic sweep, multiplying the phase by a factor k results in the same signal, but in advance in the
time domain by Dtk. As can be seen from Eq. (11), this time advance depends only on the sweep parameters Tm, f1, f2 and on
k. In Refs. [11,40], similar time advances were obtained using different arguments.
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The fact that Tm must take only a discrete set of values to ensure the fundamental phase property Eq. (11) has been first
shown in Ref. [39] but is mathematically demonstrated here for the first time.

One should note that e(t) has been designed for all t with its instantaneous frequency increasing from f1 to f2 between
t=0 and T. In practice, signals are defined only on [0,T]. Thus the phase property is not valid on the whole support of the
function. The phase property becomes false when the instantaneous frequency of cos½kFðtÞ� is outside the frequency range
of interest (i.e. [f1, f2]).

3.4. Inverse convolution

Using the Eqs. (11) and (2), one obtains

sðtÞ ¼
XN

n ¼ 1

gn � eðtþDtnÞþK (12)

with

gnðtÞ ¼
XN

k ¼ 1

Cðk,nÞhkðtÞ and K ¼
XN

n ¼ 1

Cðn,0Þ

Z þ1
�1

hnðtÞdt (13)

In Eq. (13), gn(t) corresponds to the contribution of the different Kernels to the nth harmonic. K is the global continuous
component resulting from the continuous components of the different Kernels. As the Kernels are assumed to be
integrable, K is correctly defined.

In order to separately identify each Kernel of the cascade of Hammerstein models, a signal y(t) which looks like
an inverse in the convolution sense of e(t) is needed. Unfortunately, such an inverse does not necessarily exist
mathematically. However, a band-limited inverse y(t) can easily be defined such that it satisfies the relation (14) with
sincðxÞ ¼ sinðpxÞ=px:

y � eðtÞ ¼ sincð2f2tÞ�sincð2f1tÞ ¼ dðtÞ (14)

d(t) can be seen as a band-limited Dirac Function, since its Fourier transform is 1½�f2 ,�f1 �\½f1 ,f2 �
ðf Þ. Then, Y(f), the Fourier

transform of the inverse filter y(t) can be built in the frequency domain using Eq. (15), where E*(f) is the complex conjugate
of E(f):

Yðf Þ ¼
1

Eðf Þ
1½�f2 ,�f1 �\½f1 ,f2 �

ðf ÞC
E�ðf Þ

jEðf Þj2þeðf Þ
(15)

In practice, the filter Y(f) should be built by replacing the discontinuous function 1½�f2 ,�f1 �\½f1 ,f2 �
ðf Þ by a function which

ensures a smoother transition between the two frequency domains and thus generates less unwanted side effects in the
time domain.

eðf Þ ¼ b� Tðf Þ is a frequency-dependent real parameter chosen as equal to 0 in the bandwidth and as having a large
value b outside of it, with a continuous transition between the two domains. In the following, a weight b¼

R fs=2
0 jYðf Þj2 df ,

which corresponds to the energy of the signal to be inverted, has been chosen. In practice, transitions between the two
domains can be simple linear functions or C1 Gevrey functions. An example of such a function defining a C1 transition
between T(fa)=0 and T(fb)=1 is

8f 2�fa,fb½, Tðf Þ ¼
1

2
1þtanh

1

fa�f
þ

1

fb�f

� �� �
(16)

The application of this procedure leads to y(t) that can be considered as an inverse of e(t) in the sense of convolution in the
frequency range [f1, f2].

3.5. Kernel identification in the temporal domain

After convolving the output of the cascade of Hammerstein models s(t) given in Eq. (12) with y(t), one obtains

y � sðtÞ ¼
XN

i ¼ 1

d � giðtþDtnÞ ¼
XN

i ¼ 1

~gi ðtþDtnÞ (17)

where ~gi ðtÞ corresponds to gi(t) convolved with d(t), i.e. to gi(t) filtered by a bandpass filter in the frequency band [f1,f2]. The
constant K, present in Eq. (12), has thus been filtered by d(t). Moreover, if the system under study has no significant
behaviour outside of [f1,f2], then ~gi ðtÞ ¼ giðtÞ.

In Fig. 2, y � sðtÞ is represented. Because DtnplnðnÞ and f24 f1, the higher the order of linearity n the more in advance the
corresponding ~gnðtÞwill be. Thus, if Tm is long enough, the different ~gnðtÞwill not overlap. They are then easy to separate by
windowing in the time domain. The separation of the contribution of the different orders of nonlinearity by using
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Fig. 2. Separation of the different orders of nonlinearity after convolution with y(t).
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exponential sweeps, which is mathematically demonstrated here, is already experimentally well known in the audio
community [12–14].

Next, using Eq. (18), the family f ~hn ðtÞgn2½1,N� of the Kernels of the cascade of Hammerstein models describing the
behaviour of the system in the frequency band [f1, f2] can be fully extracted:

~h1ðtÞ

^
~hNðtÞ

0
BB@

1
CCA¼AT

c

~g1ðtÞ

^
~gNðtÞ

0
B@

1
CA (18)

Ac is the Chebyshev matrix defined in the appendix without its first column and its first row and ð�ÞT stands for matrix
transposition. The first column and the first row of matrix A have been removed here as there is no continuous components
here.

As ~hn ðtÞ ¼ d � hnðtÞ, if the system under study has no significant behaviour outside of [f1, f2], then ~hn ðtÞ ¼ hnðtÞ. In most
vibration application, systems are designed for a given frequency band (typically [20 Hz, 20 kHz] for audio applications).
The border frequencies f1 and f2 can thus generally be selected to identify the real Kernels hi(t). If it is not possible, Kernels
are identified between f1 and f2 and thus are only a band-limited version of the real Kernels.

4. Practical implementation

In this section, the practical discrete-time implementation of the method presented in Section 3 is described.

4.1. Overview of the method

In Fig. 3, a global overview of the procedure is given. It can be decomposed in the following steps:
(1)
 Design of the input sweep e(t) using Eq. (8). The choices of f1, f2 and T are discussed in Section 4.2.

(2)
 Playing e(t) and recording s(t). The sampling frequency fs must be chosen to avoid any aliasing effects caused by the

digital to analog converter in the frequency range of interest [f1, f2].

(3)
 Generation of the inverse filter y(t) according to Eq. (15). A convenient way to implement this filter is described in

Section 3.4.

(4)
 Convolution of the output signal s(t) with the inverse filter y(t) as in Eq. (17). This can be done in the frequency domain

with a sufficient number of points to avoid temporal aliasing.

(5)
 Windowing in the temporal domain to obtain f ~gk ðtþDtkÞgk2½1,N� (cf. Fig. 2). Rectangular windows can be chosen to

separate the different orders of nonlinearity. N is the highest desired order in the cascade Hammerstein model.
Methods to choose N and its influence are shown in Sections 5.3 and 5.4.
(6)
 Temporal shift of the different orders of nonlinearity to recover f ~gk ðtÞgk2½1,N�. A shift of a non-integer number of samples
can be performed with a phase shift in the frequency domain.
(7)
 Multiplication with AT
c to access f ~hk ðtÞgk2½1,N�, according to Eq. (18). Ac is the Chebyshev matrix defined in the appendix

without the first column and the first row. The matrix AT
c of order 8, which is sufficient in practice, is explicitly given in

the appendix.



Fig. 3. Overview of the method used to identify a cascade of Hammerstein models.
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4.2. Choice of the parameters (f1, f2, T and N)

For satisfactory measurements, the sweep parameters f1, f2, T and N must be well chosen. These choices must be made
considering the following aspects:
�
 The frequencies f1 and f2 must be chosen such that the interesting behaviour of the system under study is in the
frequency range [f1, f2].

�
 The influence of noise on the identification results should also be minimized [40]. By itself, the exponential sweep

rejects correctly uncorrelated noise in quiet environment [7]. Moreover its energy repartition in frequency is often
adapted to the ambient noise [6,14]. The choice of this signal is thus interesting from this point of view as will be seen in
Section 5.3. If an excellent signal to noise ratio (SNR) is needed, the longer T, the better the SNR after step 4 will be at a
given amplitude of the input signal.

�
 The number of points to be convolved at step 4 is limited by the available computational power. Thus, as T increases, the

calculation time will increase. T should not be too large in order to avoid long calculation times.

�
 N should not be underestimated in order to guarantee good accuracy in identification. The optimal N is reached when is

it impossible to extract the corresponding N th impulse response from the background noise. This will be shown in
Sections 5.3 and 5.4.

�
 The different peaks gk(t) which appear in the temporal domain after the convolution with the inverse signal (step 4, see

Fig. 2) must not overlap each other. The global decay time of the system tglobal is an upper bound of the decay times of
each order of nonlinearity. Parameters f1, f2 and T such that DtN�DtN�14tglobal will thus avoid overlapping of the
different orders of nonlinearity [6,41]. Because DtN ¼ TmlnN=lnðf2=f1Þ, considering the chosen value for N, T must be
chosen to be long enough and f2/f1 not so large in order to respect the previous condition.

5. Validation of the method

In this section, the proposed method of identification is tested on a simulated cascade of Hammerstein models.

5.1. Design of the simulated system

A cascade of Hammerstein models of order N=4 has been chosen for simulation purposes. This system is fully
represented by its four Kernels h1(t), h2(t), h3(t) and h4(t). For these Kernels, which correspond to linear subsystems,



M. Rébillat et al. / Journal of Sound and Vibration 330 (2011) 1018–1038 1025
impulse responses of low order ARMA filters (2 poles and 2 zeros) with a roughly 5 ms decay time have been chosen.
Parameters of the simulated system are given in Table 1.
5.2. Identification without noise

The method presented in Section 3 and implemented as described in Section 4 has been applied here with the
parameters given in Table 2 in order to identify the different Kernels of the system.

The magnitude and phase of the frequency responses of the original and estimated Kernels H1(f), H2(f), H3(f) and H4(f)
are shown in Fig. 4. The estimated Kernels are very close to the original ones over almost the entire frequency range [f1, f2].
Table 1
Parameters used for the simulation of the cascade of Hammerstein models of order N=4.

n fzeros (kHz) fzeros/fs jpzerosj fpoles (kHz) fpoles/fs jppolesj Gains

1 0.15 7.81�10�4 0.95 1.5 7.81�10�3 0.95 10�1

2 0.4 2.1 �10�3 0.97 2 1.04�10�2 0.96 10�2

3 2 1.04�10�2 0.93 0.1 5.2�10�4 0.97 10�3

4 10 5.21�10�2 0.92 0.5 2.6 �10�3 0.95 10�5

Table 2
Parameters chosen to identify the simulated system.

Parameter Value Normalized value

f1 20 Hz f1/fs=1.04�10�4

f2 20 kHz f2/fs=1.04�10�1

fs 192 kHz

T 15 s T� fs=2.88�106 samples

N 4

Fig. 4. Magnitude (a) and phase (b) of the frequency responses of each Kernel of the simulated system. Originals are shown in solid or dotted lines and

estimations with o,+,* or x.
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For the frequency regions close to f1 and f2, the estimated Kernels deviate slightly from the original ones, especially the
highest orders. This illustrates the limits of the band-limited inverse filter defined by Eq. (15).

For a finer analysis, the relative errors in dB, defined in Eq. (19), are given for the four estimated Kernels in Fig. 5. As
magnitude estimation errors and phase estimation errors are included in this relative error, this is a more compact way to
access estimation errors:

gkðf Þ ¼ 20log10

Horig
k ðf Þ�Hmeas

k ðf Þ

Horig
k ðf Þ

�����
����� (19)

In Fig. 5, it can be seen that the relative estimation error is lower than �20 dB over a large portion of the frequency
range [f1, f2]. The consequences of the errors made in magnitude and phase near the border of [f1, f2] are clearly visible. To
avoid these side effects, the frequency range of the sweep can be chosen larger than the frequency range of interest,
depending on the desired accuracy. Near the poles and zeros of the ARMA filters, estimation errors also increase slightly.

The method proposed here gives very good results for identification purposes over a given frequency range, without
added noise.
5.3. Sensitivity to noise

In a second step, the influence of noise on the estimated Kernels has been studied on the simulated system. A white
Gaussian noise at different levels has been added to the output s(t) of the system under study (see Fig. 3). Signal to noise
ratios relatively to the input (SNRI) and before convolution (SNRB), i.e. before step 4 (Section 4 and Fig. 3) are presented in
Table 3. Kernel to noise ratios (SNRA) after step 7 are also given in Table 3. SNR is understood here as the ratio between the
root-mean-square (RMS) level of the signal (or of the Kernel for SNRA) in the absence of noise and the RMS level of noise in
the absence of signal (respectively, in the absence of Kernel). Signals are recorded at the input of the system for SNRI and at
the output of the system for SNRB. Kernels are taken after the complete identification procedure for SNRA. SNRA

corresponding to each identified Kernel is given individually. The different Kernels of the system under study have been
estimated using the parameters of Table 2 in the different noise conditions. In Table 3, it can be seen that SNRA for N=1 is
13.6 dB higher than SNRB. This confirms the fact that exponential sine sweeps reject a great part of the uncorrelated noise.

In Fig. 6, the relative estimation errors, according to Eq. (19), are given for the different Kernels and for the different
noise levels. It can be seen that the noise level has an influence on the quality of the estimation. For each Kernel, when the
noise level is decreasing, the relative estimation error is decreasing too.
Fig. 5. Relative errors made during the estimation of the different Kernels. (a) H1(f), (b) H2(f), (c) H3(f), (d) H4(f).



Table 3
Signal to noise ratio relatively to the input (SNRI), before convolution (SNRB) and after the complete identification procedure (SNRA).

SNRI (dB) SNRB (dB) SNRA (dB)

N=1 N=2 N=3 N=4

37 15.2 29.8 0.4 �7.1 �38.6

57 35.2 49.8 20.4 12.8 �18.6

77 55.2 68.8 40.4 32.8 1.4

SNRA is indicated relatively to the nth Kernel ðn 2 f1,2,3,4gÞ.

Fig. 6. Relative errors made during the estimation of the different Kernels for different noise levels. (a) H1(f), (b) H2(f), (c) H3(f), (d) H4(f).
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For a SNRI of 37 dB (SNRB of 15.2 dB), only the estimation of the first Kernel is acceptable. The three other Kernels, which
have gains at least 20 dB lower than the first one (see Fig. 4), cannot be estimated correctly in this case. Let us consider in
Table 3 the SNRA for nZ2. They are all around or below 0 dB. This means that after identification, resulting noises have a
RMS level equal to, or higher than, that of identified Kernels. This explains why H2(f), H3(f) and H4(f) cannot be estimated
correctly in this case.

When SNRI is 57 dB (SNRB of 35.2 dB), the SNRA corresponding to the second and third Kernels are higher than 10 dB. The
second and third Kernels, H2(f) and H3(f), are then correctly estimated. But the last Kernel, with SNRA=�18.6 dB is still not
identified.

When the SNRI is 77 dB (SNRB of 55.2 dB), the SNRA corresponding to the fourth Kernel will be 1.4 dB, and the fourth
Kernel H4(f) is then finally correctly estimated.

So, with the parameters given in Table 2 applied to the chosen system, it seems that any Kernel can be correctly
estimated until its SNRA reaches C0 dB. Otherwise, the corresponding Kernel is completely mixed with noise and no
information can be extracted. In practice, this defines a measurability criterion (see [42]) that can be used to estimate the
optimal value of N for a given amplitude of the input signal.
5.4. Influence of the assumed order of nonlinearity

A study of the influence of the order of nonlinearity N on estimation has been conducted on the simulated system. The
simulated system of order 4 has been identified using the parameters of Table 2 but with different assumed orders of



Fig. 7. Relative errors made during the estimation of the different Kernels for different chosen orders of nonlinearity N. (a) H1(f) estimated with

N={2,3,4,6}. (b) H2(f) estimated with N={2,3,4,6}. (c) H3(f) estimated with N={3,4,6}. (d) H4(f) estimated with N={4,6}.
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nonlinearity N ranging from 2 to 6. A white Gaussian noise with a SNRI of 80 dB (SNRB of 57.2 dB) has also been added to the
output s(t) of the simulated system. In Fig. 7, the relative estimation errors made on the Kernels estimated with
the different orders of nonlinearity are shown. The case N=4 will be the reference as it is the exact order of nonlinearity of
the simulated system.

If this order of nonlinearity is underestimated (cases N=2 and 3), the method gives inaccurate results. This is because of
the link which exists between the different estimated Kernels fhnðtÞgn2f1...Ng and the extracted impulse responses
fgnðtÞgn2f1...Ng. This link is the matrix AT

c , as seen in Eq. (18). The first coefficients of the matrix AT
c are given in Eq. (A.7) in the

appendix. By viewing these coefficients, it is obvious that odd Kernels depend only on odd extracted impulse responses and
that the same stands for even Kernels. If an impulse response of order n odd (or even) is not taken into consideration, it will
have consequences on all the Kernels of order i odd (or even) lower than n. When N=2, the nonlinearities of orders 3 and 4
are not taken into consideration and induce estimation errors on the Kernels of orders 1 and 2. And when N=3, the
nonlinearity of order 4 is not taken into consideration and induces estimation errors on the Kernel of order 2 only.

On the other hand, if the order of nonlinearity N is over-estimated (case N=6), some portion of noise will be interpreted
as extracted impulse responses. As a consequence, estimations of the Kernels are slightly less precise than in the reference
case. However, as can be seen in Fig. 7, the loss in accuracy is acceptable.

Thus, to ensure an estimation which is as close as possible to reality, it is better to choose the order of nonlinearity N as
large as possible. The upper limit of N is reached when it is impossible to extract the corresponding impulse response from
the background noise. As has been shown in Section 5.3, this case occurs when the SNRA corresponding to the N th Kernel
reaches a certain level (C0 dB for the chosen system and parameters). In practice, experimental SNRA can be calculated
and used to determine the upper limit of N, as in Section 6.2.

6. Modelling acoustical transducers with cascade of Hammerstein models

In this section, acoustical transducers are represented by cascade of Hammerstein models and their Kernels are
identified using the method presented in Section 3.

6.1. Experimental setup

Experiments have been conducted on two acoustical transducers to identify their Kernels in a cascade of Hammerstein
models representation. A standard electrodynamic loudspeaker and a prototype panel-type transducer have been
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tested. The panel-type transducer consists of a light and stiff plate of sandwich material (40 cm�60 cm) on the back of
which an exciter has been glued. The plate is suspended by elastics at the middle of two of its side to approximate free
boundary conditions. All measurements have been made on axis at 1 m from the motor of both transducers with a
microphone. Measurements have been done in a semi-anechoic room.
6.2. Measured cascade of Hammerstein models Kernels

The Kernels corresponding to both systems have been measured using the previously described experimental setup. As
the cascade of Hammerstein models is a nonlinear model, its Kernels should be independent of the amplitude of
measurement. To assess this, measurements of the Kernels corresponding to both transducers have been done using
parameters given in Table 4 for 10 different amplitudes. Amplitudes were ranging from 74 to 94 dB in pressure at 1 kHz for
the electrodynamic loudspeaker. This corresponds to normal and relatively high listening levels. For the panel-based
transducer, amplitudes were higher, ranging from 90 to 110 dB in pressure at 1 kHz.

Measurability of each Kernels, using the criterion defined in Section 5.3, has been studied for the different amplitudes at
which Kernels have been identified. As it is not possible to experimentally remove noise from measurements, an
experimental Kernel to noise ratio (SNRXP) is defined which corresponds to the ratio between the RMS level of the Kernel
with noise and the RMS level of noise in the absence of Kernel, after the complete identification procedure. This SNRXP can
be computed for each Kernel separately and can be interpreted as SNRA (see Section 5.3).

For both transducers, SNRXP corresponding to each Kernel are presented in Fig. 8 as a function of the measurement
amplitude. As expected, the SNRXP for N=1, i.e. for the linear transfer function is linear with the measurement amplitude.
One can notice that it is not the case for Kernels of order nZ2. From Fig. 8, it can also be seen that for the lower amplitudes,
Kernels of orders 3, 4 and 5 have a SNRXP close to 0 dB. They are thus not measurable and pollute slightly the other Kernels.
As has been seen in Section 5.4 a limited pollution is acceptable. Moreover, these Kernels become measurable as the
measurement amplitude increases. On the other hand, Kernels of order nZ6 are always hardly measurable for both
transducers in the chosen range of amplitude with the present experimental setup. Consequently, the choice of N=5 in the
identification procedures (see Table 4) seems to be a reasonable compromise between pollution of the identified Kernels by
noise and incomplete modelling of the system.

Mean measured Kernels and their corresponding standard deviation across measurement amplitude are then given in
Fig. 9 for the electrodynamic loudspeaker and in Fig. 10 for the panel-based loudspeaker. Due to their different underlying
physical principles, the linear and nonlinear responses of the two transducers are quite different. The panel-based
transducer has a modal behaviour and as a consequence exhibits a linear response with more dips than the electrodynamic
loudspeaker. The amplitude of the different Kernels of order nZ2 decreases with frequency for the electrodynamic
Table 4
Parameters chosen to identify the real system.

Parameter Value Normalized value

f1 20 Hz f1/fs = 1.04�10�4

f2 20 kHz f2/fs = 1.04�10�1

fs 192 kHz

T 15 s T� fs=2.88�106 samples

N 5

Fig. 8. Experimental Kernel to noise ratio after the complete identification procedure (SNRXP) as a function of the amplitude of measurement for each

Kernel. (a) Electrodynamic loudspeaker. (b) Panel-based transducer.



Fig. 9. Mean measured Kernels of the cascade of Hammerstein models for the electrodynamic loudspeaker (solid line) and the corresponding standard

deviations (dashed lines). (a) H1(f), (b) H2(f), (c) H3(f), (d) H4(f).

Fig. 10. Mean measured Kernels of the cascade of Hammerstein models for the panel-based loudspeaker (solid line) and the corresponding standard

deviations (dashed lines). (a) H1(f), (b) H2(f), (c) H3(f), (d) H4(f).
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loudspeaker, which is consistent with the physical analysis of Ref. [21]. For the panel-based loudspeaker, the amplitude
stays globally constant with frequency. The major nonlinear phenomena involved in these two transducers do not have the
same physical origins.

The variability of the measured Kernels with the excitation amplitude is studied afterwards. The linear part, which is by
definition independent of amplitude, exhibits no variations among the different measurements for both transducers. The
nonlinearities have thus been removed successfully from the linear part using the proposed method. The identified Kernels
of order nZ2 depends slightly on the amplitude at which they have been measured. As a consequence, the assumption
that these two transducers can be represented by a cascade of Hammerstein models is a correct approximation in the
chosen range of amplitude.

7. Prediction of the harmonic distortion generated by transducers

In this section, the previously identified cascade of Hammerstein models will be used to predict the harmonic distortion
generated by both transducers.

7.1. Link between HDn, THD and cascade of Hammerstein models

To characterize distortion generated by an acoustic transducer, the following approach is classically adopted. The input
of the system is assumed to be sinusoidal and nonlinearities generate harmonic components at frequencies higher than the
input fundamental frequency. The amplitudes of these harmonics compared to the amplitude of the fundamental are
considered as representative of the nonlinearity of the transducer. Total harmonic distortion (THD) and harmonic
distortion of order n (HDn) are common tools to quantify this [8]. The THD is the square root of the ratio of the power
contained in the harmonics to the power contained in the fundamental. The HDn is the same but for the nth harmonic only.

For a sinusoidal input signal xðtÞ ¼ Xcosð2pftÞ which enters a cascade of Hammerstein models identified at the
amplitude X0, the output signal z(t) can be written as in Eqs. (20) by using Eqs. (2) and (7):

zðtÞ ¼
XN

n ¼ 1

jGnðX,nf Þjcos½2pnftþ+ðGnðX,nf ÞÞ� (20a)

with

GnðX,f Þ ¼
XN

k ¼ 1

X

X0

� �k

Cðk,nÞHkðf Þ (20b)

THD and HDn can thus be directly identified from Eq. (20) and expressed as

HDnðX,f Þ ¼
GnðX,nf Þ

GTotðX,f Þ

����
���� (21a)

THDðX,f Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n ¼ 2

GnðX,nf Þ

GTotðX,f Þ

� �2
vuut (21b)

with

GTotðX,f Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n ¼ 1

½GnðX,nf Þ�2

vuut (21c)

The knowledge of the Kernels in the frequency range [f1, f2] allows for the direct computation of the THD and HDn using
Eqs. (21). This can be done for any value of input amplitude X and for any frequency f in [f1, f2].

7.2. Prediction of HDn and THD at a given amplitude

Using the different sets of Kernels measured in the previous section, the HDn and THD for the two transducers has been
predicted using Eqs. (21). To compare with predictions, traditional measurements using pure tones have been done using
the experimental protocol depicted in Section 6.1. HDn and THD have been measured this way for 50 frequencies between
50 Hz and 12 kHz. This has been done for 10 different amplitudes ranging from 74 to 94 dB in pressure for the
electrodynamic loudspeaker and from 90 to 110 dB for the panel-based one.

In Figs. 11 and 12 the predictions for the total harmonic distortion (THD), and for the harmonic distortion of orders 2
and 3 (HD2 and HD3) made using Eqs. (21) are shown for the electrodynamic loudspeaker and the panel-based
loudspeaker. It can be seen that the agreement between measured and predicted data is satisfying over the entire
frequency range for the electrodynamic loudspeaker (Fig. 11). For the panel-based loudspeakers, the agreement is also
good (Fig. 12). Below 200 Hz the predictions sometime underestimate HD2, HD3.



Fig. 11. Comparisons between measurements (circles) and predictions (solid lines) at 85 dB for the HD2, HD3 and THD of the electrodynamic loudspeaker.

Kernels identified at 86 dB have been used for predictions with N=5. (a) Harmonic distortion of order 2, HD2. (b) Harmonic distortion of order 3, HD3.

(c) Total harmonic distortion, THD.

Fig. 12. Comparisons between measurements (circles) and predictions (solid lines) at 101 dB for the HD2, HD3 and THD of the panel-based transducer.

Kernels identified at 105.5 dB have been used for predictions with N=5. (a) Harmonic distortion of order 2, HD2. (b) Harmonic distortion of order 3, HD3.

(c) Total harmonic distortion, THD.
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Fig. 13. Convergence of the prediction error averaged over different frequency bands for the electrodynamic and panel-based transducers. (a)

Electrodynamic loudspeaker: Kernels identified at 88 dB have been used for predictions at 85.1 dB. (b) Panel-based loudspeaker: Kernels identified at

99.5 dB have been used for predictions at 92.2 dB.
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However, evaluation of harmonic distortion using series does not necessary converge to the desired result [42,43].
Indeed, the number of terms N to be used in the series of Eq. (21) has to be carefully chosen for predictions to converge to
measurements. To study that point, THD has been predicted using 2, 3, 4 or 5 terms in Eqs. (21) and compared to
measurements. The mean error in frequency between predictions and measurements for different values of N is presented
in Fig. 13 for both transducers. It has been computed for the following frequency bands: [45,180] Hz (octave bands 63 and
125 Hz), [180,710] Hz (octave bands 250 and 500 Hz), [710,2800] Hz (octave bands 1 and 2 kHz) and [2800,11 200] Hz
(octave bands 4 and 8 kHz). For the electrodynamic loudspeaker in the two upper frequency bands, as N increases the mean
error become lower. For the lower frequency bands, the mean error increases with N until N=4 where it starts decreasing.
For the panel-based loudspeaker, mean error globally decreases with N. Thus, the choice of N=5 (see Table 4) in the
identification procedure and for the predictions leads to globally convergent results in the chosen ranges of amplitude and
frequency.

7.3. Prediction of HDn and THD for different amplitudes

To have an overview of the quality of the predictions depending on the amplitude at which Kernels have been measured
(Xm) and on the amplitude at which prediction are made (Xp), a mean error has been introduced. This error is defined in Eq.
(22). This error has been computed for the following frequency bands: [45,355] Hz (octave bands 63 to 250 Hz),
[355,2800] Hz (octave bands 500 Hz to 2 kHz) and [2800,11 200] Hz (octave bands 4 to 8 kHz). The error in dB in each of
these frequency bands is shown for the two transducers in Figs. 14 and 15:

D½fA ,fB �
ðXm,XpÞ ¼ 20log10mean

½fA ,fB�

THDmeasðXp,f Þ�THDpredðXm,Xp,f Þ

THDmeasðXp,f Þ

����
���� (22)

Figs. 14(a)–(c) give the resulting error for the electrodynamic loudspeaker. In Fig. 14 (a), the error in the frequency band
[45,355] Hz is shown. It can be seen that this error is acceptable, around �6 dB. The minimum of �8 dB is reached when
the THD is predicted for low values of Xp. As the amplitude of prediction Xp increases, the error increases too in this
frequency band. In Figs. 14(b) and (c), errors for frequency bands [355,2800] and [2800,11 200] Hz are shown. Error values
in these frequency bands are significantly lower than in the previous one. The minimums of these errors, which are �12 dB
and �10 dB, can be seen around the diagonals. Predictions are then precise in these frequency bands.

Figs. 15(a)–(c) give the same errors for the panel-based transducer. In Figs. 15 (a) and (c), the errors in frequency bands
[45,355] and [2800,11 200] Hz are shown. These results are acceptable though less satisfying than the results obtained for
the electrodynamic loudspeaker. In Fig. 15(b), errors for frequency band [355,2800] Hz are shown. Error values in these
frequency bands for the panel-type loudspeakers are of the same magnitude as for the electrodynamic loudspeaker,
remaining low, around �10 dB.

8. Discussion

The presented method has been applied to two real acoustic transducers, a classic electrodynamic loudspeaker and a
panel-based transducer. As a complete model describing the nonlinear behaviour of these transducers is accessible using
the previous method (see Section 6), an analysis of the two systems can be performed from this point of view. The first
difference between them appears when viewing their linear response. The panel-based transducer exhibits a well known
diffuse behaviour in the high frequency range, whereas the electrodynamic loudspeaker does not. This diffuse behaviour is
also present in the Kernels of higher order. For the two transducers, the amplitudes of the higher order Kernels can also be
compared. Kernels of the panel-based loudspeaker generally have a lower amplitude than Kernels of the electrodynamic



Fig. 14. Mean error in the frequency band [45,355] Hz (a), [355,2800] Hz (b) and [2800,11200] Hz (c) for the electrodynamic loudspeaker. Amplitudes of

measurements of the Kernels are given on the x-axis.
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Fig. 15. Mean error in the frequency band [45,355] (a), [355,2800] (b) and [2800,11 200] Hz (c) for the panel-based transducer. Amplitudes of

measurements of the Kernels are given on the x-axis.
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loudspeaker. For the electrodynamic loudspeaker, the amplitude of Kernels of order nZ2 have a tendency to decrease with
the frequency, which is coherent with Refs. [20,21], whereas for the panel-based loudspeaker there is no global variation
with frequency. Panel-based transducers thus seems to generate less distortion than electrodynamic loudspeakers, and
such distortion is almost constant with frequency.

In Section 7, prediction of the harmonic distortion of order n (HDn) and the total harmonic distortion (THD) from the
identified Kernels have been performed. The originality of the present approach is that an analytical formula involving the
identified Kernels and the amplitude at which they have been identified allows one to predict HDn and THD at different
amplitudes. This is an advancement compared to current literature where HDn and THD are usually predicted only for a
given amplitude [6,11,20]. The results obtained for the two systems when comparing this approach to the traditional one
at different amplitudes for HDn and THD are satisfying. These results validate that cascade of Hammerstein models are a
well adapted model.

9. Conclusion

In this paper a simple and rapid model based procedure to measure nonlinearities of a vibrating system has been
presented mathematically, validated by simulation and finally applied to two acoustical transducers. Cascade of
Hammerstein models have been chosen here to model the nonlinearities. It has been shown on simulations that the
identification method is very accurate. Harmonic distortion generated by these devices is afterwards precisely predicted
using this model.

This method, coming from the audio community, can be of great interest in the more general field of vibrations. In
modal analysis, for example, a common limitation to access high frequencies is the signal to noise ratio (SNR). Continuous
acoustical excitations with high levels are thus of great interest to increase the SNR, but only if the resulting signals are not
polluted by nonlinearities. Using the presented method, structures can be acoustically excited at high amplitude levels
with the assurance that the nonlinear part of the excitation present in the measurements can be completely removed. This
method can thus help to solve practical problems which are commonly encountered in experimentations involving
vibrations.

This method can also be interesting for transducer quality assessment. It is now known that traditional nonlinear
measurements tools (such as HDn and THD) correlate poorly with subjective experiences [44]. However, the present
approach gives a fine, input-independent representation of the linear and nonlinear characteristics of real transducers. As a
consequence, simulations of the nonlinear responses of identified or calculated transducers can be easily performed. This
can be useful when searching for new criteria to assess the decrease of quality caused by nonlinearities in acoustical
transducers.
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Appendix A. Computation of the matrix C

Chebyshev polynomials fTk½cosðfÞ�gk2N are defined by Eq. (A.1).

8k 2 N, cosðkfÞ ¼ Tk½cosðfÞ� (A.1)

Subsequently, it can easily be shown that they satisfy the recurrence relation given in Eq. (A.2).

k¼ 0, T0ðxÞ ¼ 1 (A.2a)

k¼ 1, T1ðxÞ ¼ x (A.2b)

k41, Tkþ1ðxÞ ¼ 2xTkðxÞ�Tk�1ðxÞ (A.2c)

Then, by writing the polynomials as in Eq. (A.3), one can obtain Eq. (A.4), using Eq. (A.2), and find the coefficients of the
matrix A:

TkðxÞ ¼
Xk

i ¼ 0

Aði,kÞxi (A.3)

i¼ 0 Að0,kþ1Þ ¼�Að0,k�1Þ (A.4a)

0o iok Aði,kþ1Þ ¼ 2Aði�1,kÞ�Aði,k�1Þ (A.4b)

iZk Aði,kþ1Þ ¼ 2Aði�1,kÞ (A.4c)
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The linearisation of the polynomials can now be rewritten in a matrix form as

1

cosðxÞ

. . .

cosðNxÞ

2
66664

3
77775¼A

1

cosðxÞ

. . .

cosNðxÞ

2
66664

3
77775 (A.5)

By inverting Eqs. (A.5), (7) is directly obtained and this results in Eq. (A.6) which gives explicitly the C matrix:

C ¼A�1 (A.6)

The matrix AT
c , necessary to access to fhnðtÞgn2½1,N�, is the matrix A without the first column and the first row, as seen in

Eq. (18). To avoid the implementation of the recurrence, the transpose of the Ac matrix of order 8, which is sufficient for
practical use, is

AT
c ¼

1 0 �3 0 5 0 �7 0

0 2 0 �8 0 18 0 �32

0 0 4 0 �20 0 56 0

0 0 0 8 0 �48 0 160

0 0 0 0 16 0 �112 0

0 0 0 0 0 32 0 �256

0 0 0 0 0 0 64 0

0 0 0 0 0 0 0 128

2
66666666666664

3
77777777777775

(A.7)
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M. Rébillat et al. / Journal of Sound and Vibration 330 (2011) 1018–10381038
[28] S. Boyd, Y.S. Tang, L.O. Chua, Measuring Volterra Kernels, IEEE Transactions on Circuits and Systems 30 (8) (1983) 571–577.
[29] G. Bicken, G.F. Carey, R.O. Stearman, Frequency domain Kernel estimation for 2nd-order Volterra models using random multi-tone excitation, VLSI

Design 15 (4) (2002) 701–713.
[30] R.J. Prazenica, A.J. Kurdila, Volterra Kernel identification using triangular wavelets, Journal of Vibration and Control 10 (4) (2004) 597–622.
[31] A.H. Kayran, E.M. Eksioglu, Nonlinear system identification using deterministic multilevel sequences, Circuits Systems and Signal Processing 24 (2)

(2005) 151–181.
[32] A. Voishvillo, A. Terekhov, E. Czerwinski, S. Alexandrov, Graphing, interpretation, and comparison of results of loudspeaker nonlinear distortion

measurements, Journal of the Audio Engineering Society 52 (4) (2004) 332–357.
[33] G. Palm, On representation and approximation of nonlinear systems, part II: discrete time, Biological Cybernetics 34 (1) (1979) 49–52.
[34] J.S. Abel, D.P. Berners, A technique for nonlinear system measurement, 121th Convention of the Audio Engineering Society, Paper 6951, October 2006.
[35] A. Farina, A. Bellini, E. Armelloni, Non-linear convolution: a new approach for the auralization of distorting systems, 110th Convention of the Audio

Engineering Society, Paper 5359, May 2001.
[36] M.J. Reed, M.O.J. Hawksford, Identification of discrete Volterra series using maximum length sequences, IEE Proceedings—circuits Devices and Systems

143 (5) (1996) 241–248.
[37] G. Golub, Numerical methods for solving linear least squares problems, Numerische Mathematik 7 (3) (1965) 206–216.
[38] S. Chen, S.A. Billings, W. Luo, Orthogonal least-squares methods and their application to non-linear system-identification, International Journal of

Control 50 (5) (1989) 1873–1896.
[39] A. Novák, L. Simon, P. Lotton, Kadlec F. Modeling of nonlinear audio systems using swept-sine signals: application to audio effects, 12th International

Conference on Audio Effects (DAFx-09), September 2009.
[40] M. Morise, T. Irino, H. Banno, H. Kawahara, Warped-TSP: an acoustic measurement signal robust to background noise and harmonic distortion,

Electronics and Communications in Japan Part III—Fundamental Electronic Science 90 (4) (2007) 18–26.
[41] P. Majdak, P. Balazs, B. Laback, Multiple exponential sweep method for fast measurement of head-related transfer functions, Journal of the Audio

Engineering Society 55 (7–8) (2007) 623–637.
[42] A. Chatterjee, N.S. Vyas, Non-linear parameter estimation with Volterra series using the method of recursive iteration through harmonic probing,

Journal of Sound and Vibration 268 (4) (2003) 657–678.
[43] A. Chatterjee, N.S. Vyas, Convergence analysis of Volterra series response of nonlinear systems subjected to harmonic excitation, Journal of Sound and

Vibration 236 (2) (2000) 339–358.
[44] A. Voishvillo, Assessment of nonlinearity in transducers and sound systems—from THD to perceptual models, 121th Convention of the Audio

Engineering Society, Paper 6910, October 2006.


	Identification of cascade of Hammerstein models for the description of nonlinearities in vibrating devices
	Introduction
	Modelling and measurements of nonlinearities
	Volterra series
	Sandwich approach
	Cascade of Hammerstein models

	Mathematical foundations of the method
	A cascade of Hammerstein models fed with sine sweeps
	Exponential sine sweeps
	Fundamental phase property
	Inverse convolution
	Kernel identification in the temporal domain

	Practical implementation
	Overview of the method
	Choice of the parameters (f1, f2, T and N)

	Validation of the method
	Design of the simulated system
	Identification without noise
	Sensitivity to noise
	Influence of the assumed order of nonlinearity

	Modelling acoustical transducers with cascade of Hammerstein models
	Experimental setup
	Measured cascade of Hammerstein models Kernels

	Prediction of the harmonic distortion generated by transducers
	Link between HDn, THD and cascade of Hammerstein models
	Prediction of HDn and THD at a given amplitude
	Prediction of HDn and THD for different amplitudes

	Discussion
	Conclusion
	Acknowledgements
	Computation of the matrix C
	References




